Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Pharmacol Ther ; 237: 108249, 2022 09.
Artículo en Inglés | MEDLINE | ID: covidwho-2015917

RESUMEN

Fine control over chloride homeostasis in the lung is required to maintain membrane excitability, transepithelial transport as well as intra- and extracellular ion and water homeostasis. Over the last decades, a growing number of chloride channels and transporters have been identified in the cells of the pulmonary vasculature and the respiratory tract. The importance of these proteins is underpinned by the fact that impairment of their physiological function is associated with functional dysregulation, structural remodeling, or hereditary diseases of the lung. This paper reviews the field of chloride channels and transporters in the lung and discusses chloride channels in disease processes such as viral infections including SARS-CoV- 2, pulmonary arterial hypertension, cystic fibrosis and asthma. Although chloride channels have become a hot research topic in recent years, remarkably few of them have been targeted by pharmacological agents. As such, we complement the putative pathophysiological role of chloride channels here with a summary of their therapeutic potential.


Asunto(s)
Fibrosis Quística , Hipertensión Arterial Pulmonar , Virosis , Canales de Cloruro/metabolismo , Cloruros/metabolismo , Fibrosis Quística/tratamiento farmacológico , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Hipertensión Pulmonar Primaria Familiar , Humanos , Pulmón/metabolismo , Virosis/tratamiento farmacológico
2.
Int J Mol Sci ; 23(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: covidwho-1667194

RESUMEN

The TMEM16A/anoctamin-1 calcium-activated chloride channel (CaCC) contributes to a range of vital functions, such as the control of vascular tone and epithelial ion transport. The channel is a founding member of a family of 10 proteins (TMEM16x) with varied functions; some members (i.e., TMEM16A and TMEM16B) serve as CaCCs, while others are lipid scramblases, combine channel and scramblase function, or perform additional cellular roles. TMEM16x proteins are typically activated by agonist-induced Ca2+ release evoked by Gq-protein-coupled receptor (GqPCR) activation; thus, TMEM16x proteins link Ca2+-signalling with cell electrical activity and/or lipid transport. Recent studies demonstrate that a range of other cellular factors-including plasmalemmal lipids, pH, hypoxia, ATP and auxiliary proteins-also control the activity of the TMEM16A channel and its paralogues, suggesting that the TMEM16x proteins are effectively polymodal sensors of cellular homeostasis. Here, we review the molecular pathophysiology, structural biology, and mechanisms of regulation of TMEM16x proteins by multiple cellular factors.


Asunto(s)
Anoctamina-1/metabolismo , Anoctaminas/metabolismo , Canales de Cloruro/metabolismo , Animales , Anoctaminas/fisiología , Transporte Biológico/fisiología , Membrana Celular/metabolismo , Humanos , Transporte Iónico/fisiología , Proteínas de Transferencia de Fosfolípidos/metabolismo
3.
Nature ; 594(7861): 88-93, 2021 06.
Artículo en Inglés | MEDLINE | ID: covidwho-1171428

RESUMEN

COVID-19 is a disease with unique characteristics that include lung thrombosis1, frequent diarrhoea2, abnormal activation of the inflammatory response3 and rapid deterioration of lung function consistent with alveolar oedema4. The pathological substrate for these findings remains unknown. Here we show that the lungs of patients with COVID-19 contain infected pneumocytes with abnormal morphology and frequent multinucleation. The generation of these syncytia results from activation of the SARS-CoV-2 spike protein at the cell plasma membrane level. On the basis of these observations, we performed two high-content microscopy-based screenings with more than 3,000 approved drugs to search for inhibitors of spike-driven syncytia. We converged on the identification of 83 drugs that inhibited spike-mediated cell fusion, several of which belonged to defined pharmacological classes. We focused our attention on effective drugs that also protected against virus replication and associated cytopathicity. One of the most effective molecules was the antihelminthic drug niclosamide, which markedly blunted calcium oscillations and membrane conductance in spike-expressing cells by suppressing the activity of TMEM16F (also known as anoctamin 6), a calcium-activated ion channel and scramblase that is responsible for exposure of phosphatidylserine on the cell surface. These findings suggest a potential mechanism for COVID-19 disease pathogenesis and support the repurposing of niclosamide for therapy.


Asunto(s)
Anoctaminas/antagonistas & inhibidores , COVID-19/patología , Fusión Celular , Evaluación Preclínica de Medicamentos , Células Gigantes/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Anciano , Anciano de 80 o más Años , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología , Células Epiteliales Alveolares/virología , Animales , Anoctaminas/metabolismo , COVID-19/metabolismo , COVID-19/virología , Señalización del Calcio/efectos de los fármacos , Línea Celular , Canales de Cloruro/metabolismo , Chlorocebus aethiops , Femenino , Células Gigantes/metabolismo , Células Gigantes/virología , Humanos , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/virología , Masculino , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Glicoproteína de la Espiga del Coronavirus/metabolismo , Replicación Viral/efectos de los fármacos
4.
Bull Exp Biol Med ; 170(5): 649-653, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: covidwho-1159147

RESUMEN

Ivermectin (IVM) belongs to the class of macrocyclic lactones, which is used as an antiparasitic agent. At present, the researchers focus on possibility to use IVM in treatment of certain forms of cancer and viral diseases such as COVID-19. The mechanisms of IVM action are not clear. It is assumed that IVM affects chloride channels and increases cytoplasmic concentration of chloride. This study examines the effect of IVM on chloride currents induced by glycine (IGly). Experiments were carried out on isolated pyramidal neurons of the rat hippocampus with whole-cell patch clamp. A short-term (600 msec) application of IVM in a concentration of 10 µM induced a slow inward current, which persisted after washing the neurons. The low concentrations (0.1-1000 nM) of IVM did not induce any novel current, but it rapidly and reversibly reduced the peak amplitude and accelerated desensitization of IGly in a dose-dependent manner. The threshold concentrations of IVM sufficient to reduce peak amplitude of IGly and to accelerate desensitization of IGly were 100 nM and 0.1 nM, respectively. The study revealed a high sensitivity of neuronal glycine receptors to IVM.


Asunto(s)
Canales de Cloruro/efectos de los fármacos , Glicina/farmacología , Ivermectina/farmacología , Células Piramidales/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antivirales/farmacología , Células Cultivadas , Canales de Cloruro/metabolismo , Relación Dosis-Respuesta a Droga , Hipocampo/citología , Hipocampo/metabolismo , Activación del Canal Iónico/efectos de los fármacos , Técnicas de Placa-Clamp , Células Piramidales/fisiología , Ratas , Ratas Wistar , Receptores de Glicina/efectos de los fármacos , Receptores de Glicina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA